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We consider the adiabatic problem for general time-dependent quadratic 
Hamiltonians and develop a method quite different from WKB. In particular, 
we apply our results to the Schr6dinger equation in a strip. We show that there 
exists a first regular step (avoiding resonance problems) providing one adiabatic 
invariant, bounds on the Liapunov exponents, and estimates on the rotation 
number at any order of the perturbation theory. The further step is shown to be 
equivalent to a quantum adiabatic problem, which, by the usual adiabatic 
techniques, provides the other possible adiabatic invariants. In the special case 
of the Schr6dinger equation our method is simpler and more powerful than the 
WKB techniques. 
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1. I N T R O D U C T I O N  

In  this p a p e r  we cons ide r  the  q u a d r a t i c  H a m i l t o n i a n  sys tems 

h(p,  q; t ) =  �89 q [HI p,  q) (1) 

where  H is a real,  q u a d r a t i c  fo rm ( tha t  is, a 2n x 2n s y m m e t r i c  m a t r i x )  

d e p e n d i n g  o n  time. Thus ,  the e q u a t i o n s  of  m o t i o n  are  p r o v i d e d  by  

dp/dt = -Oh/~q,  dq/dt = ~h/@ 

or, equ iva len t ly ,  if we set u = (p,  q), 

du/dt = J H u  (2) 
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where J is the skew-symmetric matrix 

) 
Furthermore, we will always assume that H is strictly positive, and we look 
at the case where H is a smooth, slowly varying family of quadratic forms 
H(et) for which e is a small parameter. A particular choice for this family 
yields the system of second-order differential equations 

ii + A(et)u = 0 (3) 

where A(et) is an n x n  (strictly positive) symmetric matrix depending 
slowly on time. This case corresponds, for instance, to a set of slowly 
varying coupled harmonic oscillators. Many results have already been 
obtained in the framework of the theory of adiabatic invariants. One 
usually assumes that A(t )  is k-times differentiable and has definite limits at 
_+ oe. Then, under the hypothesis that the eigenvalues of A are never 
degenerate, (1) one can show that the action variables of the Hamiltonian 
problem are good invariants in the sense that their total variation in time is 
at most of order e k. This kind of result is very special to the case of linear 
equations (or quadratic Hamiltonians) except in the one-dimensional case, 
where Neishtadt (2) has obtained analogous results for general nonlinear 
systems. In a previous paper (3/ we showed that the results in the one- 
dimensional linear case allow us to get rigorous bounds for the exponential 
increase of solutions of (3) when we do not assume asymptotic limits for A. 
In particular, if A(t)  is an ergodic differentiable process, we can get upper 
bounds for the Liapunov exponent associated with (3). We refer to Ref. 3 
for applications of these results to the Schr6dinger equation: asymptotic 
width of the gaps, estimation of the integrated density of states. The present 
paper develops in this case a more general and simpler method than the 
WKB machinery. In this paper we extend our results to n > 1. Let us stress 
that, in contrast with Ref. 1, we do not require that the eigenvalues of A are 
not degenerate, and we deal with general Hamiltonian systems as in (1). Of 
course, we do not assert that the n invariants obtained in Ref. 1 exist in 
general. We only prove that their sum is always an adiabatic invariant and 
this is sufficient to provide an upper bound for the rate of exponential 
increase of any solution of (1). 

Equation (2) yields linear symplectic motion. The main idea of this 
paper is to carry out local (in time) symplectic changes of variables in 
order to simplify this equation. This idea is rather familiar in the study of 
dynamical systems, but unusual in the study of linear differential equations 
(for the Schr6dinger equation one usually deals with the WKB method, 
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which attempts to solve directly this equation). The linear symplectic group 
is the set of matrices S satisfying S r J S  = J; this set acts on the set of the 
quadratic forms H ~ STHS. Furthermore, any C l family H(t) of quadratic, 
strictly positive Hamiltonians is mapped, through a C 1 family of canonical 
transforms S(t), onto the family H ' ( t ) = S r H S + S T J d S / d t .  We can now 
state our basic theorem: 

T h e o r e m  1. Let H(t) be a family of quadratic Hamiltonians 
satisfying the following properties: 

(i) There exist strictly positive constants K1,/s such that 

0 < K x  " Ia< H(t) < K2 " Ia 

(ii) The family is C k and all its derivatives are uniformly bounded 
(later we will say "uniformly Ck"). 

Then, for sufficiently small e, the adiabatic problem H(et) is 
conjugated through a uniformly bounded family of symplectic transforms 
with the following Hamiltonian problem: 

H'(et) = H (et) + e~h(~t) 

where h is uniformly bounded and 

H - ( ~ t ) = H  o +~H~ +~2Hs + ... + ~ k - l H ~ _  1 

where H,~ belongs to the space E -  of J-commuting matrices and is 
uniformly C k- i 

The dominant term in H' is the first one and it belongs to E - .  But, for 
any element H -  of E - ,  J H -  is a generator of symplectic rotation in R 2n. 
Then, u p  to order e ~, the norm of u is a trivial invariant of Eq. (2). This 
proves the existence of an adiabatic invariant in the C k case. Theorem 1 is 
obtained by using repeatedly the following Proposition: 

Proposition 1. There exists an analytic map from the set of strictly 
positive quadratic forms into the symplectic transform H ~  SH such that 
S~HSH belongs to the set E -  of quadratic forms commuting with J. 

Comment. Below we give an explicit construction for this analytic 
map. 

Theorem 1 yields that up to order e k the initial problem is equivalent 
to a problem of quantum adiabatic invariants on an n-dimensional Hilbert 
space. This class of problems is more familiar to physicists and simpler 
since it involves the unitary group instead of the symplectic group. In any 
case, at this step, the problem is reduced to a first-order n-dimensional 
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linear system. The usual perturbative theorems (4"5) provide the results of 
Ref. 1 with some slight extensions. 

In the special case where one assumes that H(t)  is asymptotically con- 
stant, Theorem 1 allows us to exhibit an explicit adiabatic invariant up to 
order ~ :  this is an extension to general (possibly degenerate) Hamiltonians 
of parts of the results of Ref. 1. 

The following corollary provides a general asymptotic behavior for 
slowly varying Hamiltonians (without particular assumptions at infinity): 

Coro l l a ry  1. Let H(t)  satisfy the hypotheses of Theorem 1. Then 
for sufficiently small e any solution u of the adiabatic problem 

satisfies 

du/dt = JH(et)u 

1 
lim s u P t  Ilog Ilu(t)ll I < Ce k 

In particular, if H(t)  is an ergodic differentiable process, this corollary 
provides an upper bound for the Liapunov exponents of (1). 

We apply our results to the analysis of the eigenvalue problem 
associated with the generalized Schr6dinger operator: 

H~P= -dZ~P/dx z + A ( x ) g  t (4) 

where ~u is an n-component vector and A an n x n symmetric matrix. Then, 
the behavior of the eigenfunctions associated with large eigenvalues is 
equivalent to a degenerate problem of type (1). Our results yield an upper 
bound on the rate of decrease of eigenfunctions associated with (4) in the 
limit of large eigenvalues. 

Finally, we introduce a rotation number for any continuous family of 
symplectic transforms and we prove, in the limit of adiabatic linear 
Hamiltonian problems, the following corollary: 

Corollary 2. Let H(t)  satisfy the hypotheses of Theorem 1. Then 
for sufficiently small e the rotation number ~ of the adiabatic problem 

is given by 

du/dt = JH(~t)u 

= limt~oosup ~ Tr H -  (et) dt + 0(~ k) 

where H -  is provided by Theorem 1. 
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In the case of the Schr6dinger operator (4), this corollary provides an 
estimate of the integrated density of states for large energies. 

2. P R O O F  OF P R O P O S I T I O N  1 

We will use the following splitting of the set E of the quadratic forms 
into E + and E - :  

E + = {H; J H +  H J =  0} (5) 

E = { H ; J H - H J = 0 }  (6) 

These two spaces satisfy E =  E + |  and thus any quadratic form H can 
be written 

H =  H + + H (7) 

where H + = I ( H + J H J )  and H - = � 8 9  are the projections of H 
associated with the splitting. The general form of an element in E + is 

where A and B are symmetric. Any element in E -  has the form 

g = - B  (9) 

where A is symmetric and B is skew-symmetric. In general the orthogonal 
projection onto E -  is not a symplectic transform. We have to find a linear 
symplectic matrix SH such that S ~ H S H  belongs to E - ,  that is 

S T  H S H  = - J S ~ 4 H S H J  

Since SH is symplectic, this is equivalent to 

T T S H S H H S H S  H = - J H J  

The matrix SH S r  is positive symmetric and symplectic (S r is symplectic as 
soon as SH is symplectic). Now we assume that H is strictly positive, so 
that if we use the change of variables S H S r =  H 1/2KH-m then K has to 
be positive symmetric and to satisfy 

K 2 = - H1/~JHJH 1/2 (10) 

The unique solution is K =  (-HI/2jHJH1/2)1/2. Indeed, the left-hand side of 
(10) is a positive symmetric matrix. This yields 

SHS~  = H 1/2(_H1/2jHJHI/2)I/2 H_1/2 (11) 

822/49/3-4-28 
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We first have to check that SuS~  is actually a symplectic matrix. Setting 
N =  H m J H  1/2, we have to check that 

H -  1/2(NTN)1/2 N-I(NTN)t/2 H 1/2 = _ j  (12) 

that is 

]UIU I I N I = N  (13) 

where INI stands for (NTN) m. But since N is a normal operator, it com- 
mutes with INI and (13) is equivalent to INI 2= - N  2, which is satisfied 
since N is skew-symmetric. Thus, (11) defines a symplectic solution SuShi 
depending analytically on H (as soon as H >  0), and the last step is to find 
a symplectic solution SH depending analytically on SHS~. One can easily 
check that (SuShi) m is still symplectic and thus provides a convenient 
solution. But, in the proof of Corollary 2, we shall need a "triangular" 
solution of the form 

where a and b are n x n matrices satisfying a rb = b ra, to ensure that SH is 
symplectic. Thus, we have to solve the following equation in a and b: 

s H s r = (  A B '~=(  aar abr ) 
B T DJ \ba T (aar ) - l+bb  r 

where A and D are strictly positive symmetric n • n matrices (since S u S  T is 
symmetric positive) and B is any n • n matrix satisfying 

A B r =  BA (14) 

BrD =DB (15) 

AD - B2 = Id (16) 

Let us first notice that D is uniquely determined by A and B, and it is thus 
sufficient to solve 

A =-aa T 

B r =  ba r 

A regular solution is provided by 

a = A 1/2 (17) 

b = BrA-1/2 (18) 
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since Eq. (14) ensures that SH is symplectic. Furthermore, it is important 
for the study of the rotation number that our "triangular" symplectic 
matrices form a group, which is not the case for symmetric ones. Thus, 
iterating our symplectic transforms still provides "triangular" symplectic 
transforms. 

3. P R O O F  OF T H E O R E M  1 

Let us consider a k-times differentiable Hamiltonian H(t )  satisfying the 
hypotheses of Theorem 1. Using the variable T = et and the transform of 
Proposition 1, we get 

H'(gt)  = S ~  H S  H + e S ~ J  dS  . / d z  (19) 

= H o + eh 1 (20) 

The first term is C ~ and lies in E - ,  and the second one is C k-  1 and of 
order 5: this is exactly the announced result for k = 1. We now proceed 
recursively, and we assume that after p transformations ( p < k )  the 
Hamiltonian is given by 

H(et)  = H o + eH~ + ~,2H 2 -k- . . .  + e p -  1Hp_ ~ + ePhp (21) 

where H i lies in E and is uniformly C k-  i, and hp is uniformly C k- P. Let 
us now recall that the symplectic transform Su depends analytically on H 
and is the identity for any H in E - .  Thus, for H given by (22), Su may be 
written as 

S . = I d + ~ P S l 4 ( e t )  where S/~ is uniformly C k p (22) 

Then, S r H S .  H is of order e p and uniformly C k-p ,  and S ~ H S H  belongs 
to E - .  Thus, we have 

S~IHSt4= H o + ~ H {  + e2H 2 + . . .  + ePHp (23) 

H'(e t )  = S ~ H S ,  + e p + 1S~tJ d s , / d z  

= H  o +eH~- + e 2 H 2  + . . .  +~3PHp -.~.ep+lhp+l (24) 

where Hp is in E -  uniformly C k-  P, and hp +1 is uniformly C k - p -  1. While 
p < k, we can iterate this procedure in order to get the result announced in 
Theorem 1. 

Theorem 1 allows us, through a uniformly bounded family of symplec- 
tic transforms, to translate the initial problem (2) into a form that provides 

d Flull 2/dt = 2ek(u, Jh(et)u) (25) 



836 Delyon and Foulon 

Thus 

d Ilull 2/dt ~ ~kC IlUll 2 (26)  

This provides the bounds of Corollary 1 in the new coordinates; these 
asymptotic bounds remain true through the bounded symplectic change of 
variables that goes back to the initial coordinates. This ends the proof of 
Corollary 1. 

4. C O M M E N T :  REDUCTION TO THE Q U A N T U M  ADIABATIC  
THEORY 

Let H satisfy the hypotheses of Theorem 1. We have proven that up to 
order ~k this problem is equivalent to a new Hamiltonian H' lying in E - :  

H' = H o + el l?  + eZH2 + --- + e k 1 H ~  1 

where H i is uniformly C k i. Thus, H' commutes with J and in particular 
with the orthogonal projector P =  (1 - i J ) /~ /2  and we have 

P du/dt = P J H ' u  

that is, 

dPu/dt  = J P H ' P u  = i P H ' P u  (27) 

where we have used J P =  iP. More precisely, if H' is given by Eq. (9), 
setting ~ = p + i q  and ~ ,Uf=A+iB ,  then Eq.(27) is equivalent to the 
quantum time-dependent Hamiltonian problem: 

i d ~ / d t  = 3 / f ( e t ) ~  

where ~ is a self-adjoint operator. 
In the special case where the distance between eigenvalues of Yf is 

uniformly bounded from below, we can apply the usual techniques (by 
successive diagonalizations), which yields the results of Ref. 1. 

5. APPLICATION TO THE SCHRODINGER EQUATION 

Let us now consider a degenerate problem which occurs in the study 
of the generalized Schr6dinger operator (4) and look at the eigenvalue 
problem in the limit of large eigenvalues: 

- d Z ~ / d x  2 + A ( x ) ~ =  E ~  (28) 
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Setting e = 1/~/E, x = et, and u(t)= ~(x), we get 

d2u/dt 2 + [1 - e2A(et) ]u = 0 (29) 

The corresponding quadratic form for the classical Hamiltonian problem in 
the variables (p, q) = (du/dt, u) is defined by 

f 0, 

This problem is completely degenerate, since all the eigenvalues of H go to 
1 as e goes to zero. The usual techniques do not apply and actually there is 
only one adiabatic invariant. We can apply our results. In this case the first 
step is especially simple and gives rises to a symplectic transform S: 

S=(EI-e2A]I /4  0 ) 
0 E 1 _ 82A]_1/4 (31) 

Finally, assuming that A is uniformly C k, we get 

Then 

lim sup 1/]tl log Ilu]l ~ C~ k+2 (32) 

lim sup 1/Ixl log(I] ~'(x)ll 2 + [I ~(x)l12 ~ CE (k+ 1)/2 (33) 

We refer to Ref. 3 for applications to localization and asymptotic behavior 
of the gaps for Eq. (28). 

6. T H E  R O T A T I O N  N U M B E R  

Generalization of Sturm-Liouville theory has already been considered 
by various authors. The rotation number for general second-order differen- 
tial equations has been roughly defined in Ref. 6. Ruelle (7) defined the 
rotation number for a family of symplectic transform and in a companion 
paper (8) we give a different proof of it. Thus, we just recall some facts about 
it. In the following we denote by U(n) the unitary group, that is, the inter- 
section of the symplectic and the orthogonal group (or equivalently the 
group of the symplectic matrices commuting with J). A unitary operator U 
can be written as 
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where a + ib is unitary in the usual sense. Let L be the set of Lagrangian 
subspaces (n-dimensional spaces isotropic with respect to the bilinear 
form J). If P and P' belong to L, then there exists a unitary operator U 
mapping P onto P'. This operator is defined up to an element of O(n), that 
is, an element of U(n) with b = 0. Thus, to any pair (P, P') we can associate 
a unique element of the unit circle S 1 defined by det(a+ib) 2. This 
definition is convenient since it is invariant by the subgroup O(n) and this 
element of S 1 can be seen as an "angle" between the two Lagrangian spaces 
P and P'. Notice that a symplectic matrix maps a Lagrangian space onto a 
Lagrangian space. Now, given a continuous family S(t) of symplectic 
matrices and a Lagrangian space P, we define the winding number of S(t) 
with respect to P for t in [0, to] as the total variation of the angle between 
P and S(t)P until t = to. The rotation number is then defined as the limit (if 
it exists, or, say, the upper limit in general cases) of the winding number 
divided by 2gto. The important point is that the winding number is "almost 
independent" of the Lagrangian space P, so that the rotation number 
becomes independent of the Lagrangian plane P. Furthermore, if S(t) is 
given by 

then we prove that the winding number of the Lagrangian plane Po defined 
by p = 0 is just provided by the winding number of the unitary matrix 
( D - i B )  J(D + iB). Thus, a convenient explicit formula for the rotation 
number c~ is 

= lira sup Im(2rcT)-~ f log(det [(D - iB)- ~ (D + iB)] (36) 
T ~ o o  d 

Remark. It is known that the fundamental group of linear symplectic 
group is Z and that this group is in fact provided by the fundamental 
group of U(n), which is induced by the square determinant. Thus, we are 
looking at the rotation number in the symplectic group due to the fact that 
the rc 1 of this group is Y. This is in fact the property that Ruelle used to 
defined the rotation number. Finally, this shows that we have defined the 
unique possible winding number. 

Now, H(t) being given, we can consider the symplectic solution S(t) of 
the adiabatic problem: 

dS(t)/dt = JH(et) S(t), S(0) = 1 (37) 

and look at the rotation number cr The first point is to prove that using 
the symplectic change of variables of Theorem 1 does not affect the 
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rotation number. This is obvious since our symplectic transforms are 
"triangular" and thus leave the plane Po invariant. The second step is to 
estimate the rotation number when the Hamiltonian is H =  H - + e l l  +. 
Then (41) provides 

d(D+iB) /d t=(N-- iM)(D+iB)+z(Q+iP)(D- iB)  (38) 

where 

That is, 

( - ; )  f 9, H - =  - N  

g)  ,40  

d l o g d e t [ ( D _ i B )  I (D+iB)] 
dt 

= 2i Tr M +  2e Im [Tr(Q + iP)(D - iB)(D + iB)] 

= i Tr H -  + O(e) (41) 

Equation (41) follows from the fact that ( D -  iB)/(D + iB) is unitary. 
We end this section with an application to the SchrSdinger operator. 

Let us consider the self-adjoint SchrSdinger operator with Neumann boun- 
dary conditions at 0 and X, that is, T '(0)= T'(x)= 0. The eigenvalues of 
this operator correspond to the values of E in (28) such that the image 
of the Lagrangian space gt,= 0 at x = 0 possesses a nonzero intersection 
with itself at x=X.  This means that the unitary operator U= 
( D - i B )  -1 (D+iB) has an eigenvalue equal to 1. Furthermore, it is 
known (6/that the argument of the eigenvalues of U increases continuously 
with E. Thus, the winding number (divided by 2re) of the Lagrangian space 
gt, = 0 provides the number of eigenvalues of the SchrSdinger operator in 
[0, X]. The limit of this number divided by 2rex (whenever it exists) is the 
so-called integrated density of states. As we have claimed, it does not 
depend on the boundary conditions and is the rotation number of the 
eigenvalue equation. Finally, we mention that the convergence of these 
numbers is physically a weak assumption and occurs as soon as we assume 
some stationarity property for the problem. The natural framework is then 
the ergodic theory and has already been extensively studied. 
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